Abstract

Although the Ni-rich cathodes materials are so attractive in lithium batteries for its high capacity and costs; the drawback of structural corruption caused by electrolyte corrosion still exist as a main problem, which retards its commercial application. This paper demonstrated a cellulose nanofiber (CNF) assisted hydrothermal synthesis of Li[Ni0.8Co0.1Mn0.1]O2 with tight binding of primary particles, thus partially alleviated the corrosion of electrolyte on Li[Ni0.8Co0.1Mn0.1]O2 during the charging and discharging process. The as prepared CNF assisted hydrothermal synthesized Li[Ni0.8Co0.1Mn0.1]O2 delivers reversible capacity of 145.1mAh g−1 after 50 cycles at 0.5C, which is 10.3% higher than the bare Li[Ni0.8Co0.1Mn0.1]O2 cathodes. Adding CNF in the hydrothermal synthesis process, not only templated the growth of precursor, but also enhanced the binding force of the primary Li[Ni0.8Co0.1Mn0.1]O2 particles when the precursor is calcined. The application of CNF in preparation of Li[Ni0.8Co0.1Mn0.1]O2 is considerable. It suggests a simple strategy to improving the synthesis and performance of Ni-rich cathode materials, which can also be applied to other Li-ion cathode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call