Abstract

The selection of sacrificial support materials is important in the fabrication of complex freeform structures. In this study, a dual droplet-based, freeform 3D printing method for pseudoplastic alginate biomaterial inks was developed using Bingham plastic cellulose nanocrystals (CNCs) as support nanomaterials. CNCs-CaCl2 mixture compositions and alginate concentrations were varied to enhance printability with rheological properties of shape fidelity and structural stability. The mixtures supported the shape of alginate and allowed CaCl2 diffusion-based cross-linking during 3D printing. The hydrogels showed rheological and physicochemical properties similar to those of pure alginate hydrogel, as CNCs were removed during post-printing processing. BSA-loaded multi-layered spheres, freeform 3D-printed for oral protein drug delivery, protected BSA in the gastric environment and provided controlled and sustained release of BSA into the intestinal environment as layer width and alginate concentration increased. This method can facilitate freeform 3D printing of diverse pseudoplastic biomaterial inks for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call