Abstract
Near-infrared circularly polarized light is attractive for wide-ranging applications. However, high-performance near-infrared circularly polarized light is challenging to realize. Here, we show that left-handed chiral photonic cellulose nanocrystal (CNC) films produced from ultrasonicated suspensions enable right-handed circularly polarized luminescence with a dissymmetry factor of -0.330 in the second near-infrared window (NIR-II). We present a theoretical analysis of the adverse effect of structural defects and luminescence intensity heterogeneity on the right-handed circularly polarized luminescence glum inside the bandgap and the occurrence of left-handed circularly polarized luminescence at the band edges. We demonstrate the potential of the chiral photonic CNC films with NIR-II circularly polarized light for cancer cell discrimination. The present work identifies key scientific questions in CNC-based circularly polarized luminescence materials research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.