Abstract

Properties of cellulose are typically functionalized by organic chemistry means. We progress an alternative facile way to functionalize cellulose by functional group counter-cation exchange. While ion-exchange is established for cellulose, it is far from exploited and understood beyond the most common cation, sodium. We build on our work that established the cation exchange for go-to alkali metal cations. We expand and further demonstrate the introduction of functional cations, namely, lanthanides. We show that cellulose nanocrystals (CNCs) carrying sulfate-half ester groups can acquire properties through the counter-cation exchange. Trivalent lanthanide cations europium (Eu3+), dysprosium (Dy3+) and gadolinium (Gd3+) were employed. The respective ions showed distinct differences in their ability of being coordinated by the sulfate groups; with Eu3+ fully saturating the sulfate groups while for Gd3+ and Dy3+, values of 82 and 41 % were determined by compositional analysis. CNCs functionalized with Eu3+ displayed red emission, those containing Dy3+ exhibited no optical functionality, while those with Gd3+ revealed significantly altered magnetic relaxation times. Using cation exchange to alter cellulose properties in various ways is a tremendous opportunity for modification of the abundant cellulose raw materials for a renewable future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.