Abstract
Bacteria-synthesized polysaccharides have attracted interest for biomedical applications as promising biomaterials to be used as implants and scaffolds. The present study tested the hypothesis that cellulose exopolysaccharide (CEC) produced from sugarcane molasses of low cost and adequate purity would be suitable as a template for 2D and 3D neuron and/or astrocyte primary cultures, considering its low toxicity. CEC biocompatibility in these primary cultures was evaluated with respect to cell viability, adhesion, growth and cell function (calcium imaging). Polystyrene or Matrigel® matrix were used as comparative controls. We demonstrated that the properties of this CEC in the 2D or 3D configurations are suitable for differentiation of cortical astrocytes and neurons in single or mixed cultures. No toxicity was detected in neurons that showed NMDA-induced Ca2+ influx. Unlike other polysaccharides of bacterial synthesis, the CEC was efficient as a support even in the absence of surface conjugation with extracellular matrix proteins, maintaining physiological characteristics of cultured neural cells. These observations open up the perspective for development of a novel 3D biofunctional scaffold produced from bacterial cellulose and obtained from renewable sources whose residues are not pollutants. Its low cost and possibility to be manufactured in scale are also suitable for potential applications in regenerative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.