Abstract

Magnetic carbon–iron nanoadsorbents fabricated by carbonizing cellulose and reducing Fe3O4 nanoparticles or Fe(NO3)3 (the products are denoted as MC–O and MC–N, respectively) have demonstrated great Cr(VI) removal. MC–N with a higher proportion of zero-valence iron (ZVI) and bigger specific surface area exhibited better resistance to oxygen and acid than MC–O due to its smaller pore size. The Cr(VI) removal was highly pH-dependent. For example, 4.0 mg L−1 Cr(VI) neutral solution was completely purified by 2.5 g L−1 MC–O and MC–N within 10 min. 1000 mg L−1 Cr(VI) solution at pH 1.0 was completely removed by both nanoadsorbents in 10 min. The MC–O nanoadsorbents had a higher removal percentage (98.1%) than MC–N (93.5%) at pH 7.0, while MC–N had a removal capacity of 327.5 mg g−1, much higher than 293.8 mg g−1 of MC–O at pH 1.0. A chemical adsorption was revealed from the pseudo-second-order kinetic study. Monolayer adsorption of Cr(VI) was revealed by a better fitting of the Langmuir model isotherm, rather than multilayer adsorption for the Freundlich model. These nanoadsorbents could be easily separated from solution by using a permanent magnet after being treated with Cr(VI). Finally, the Cr(VI) removal mechanisms were proposed considering the Cr(VI) reduction and precipitation of Cr(III).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.