Abstract

Surfactin secreted by Bacillus subtilis can confer strong, diverse antipathogenic effects, thereby benefitting the host. Carbon source is an important factor for surfactin production. However, the mechanism that bacteria utilize cellulose, the most abundant substance in the intestines of herbivores, to produce surfactin remains unclear. Here, we used B. subtilis HH2, isolated from the feces of a giant panda, as a model to determine changes in surfactin expression in the presence of different concentrations of cellulose by quantitative polymerase chain reaction and high-performance liquid chromatography. We further investigated the antimicrobial effects of surfactin against three common intestinal pathogens (Escherichia coli, Staphylococcus aureus, and Salmonella enterica) and its resistance to high temperature (60–121°C), pH (1–12), trypsin (100–300 μg/mL, pH 8), and pepsin (100–300 μg/mL, pH 2). The results showed that the surfactin expressed lowest in bacteria cultured in the presence of 1% glucose medium as the carbon source, whereas increased in an appropriate cellulose concentration (0.67% glucose and 0.33% cellulose). The surfactin could inhibit E. coli and Staphylococcus aureus, but did not affect efficiently for Salmonella enterica. The antibacterial ability of surfactin did not differ according to temperature (60–100°C), pH (2–11), trypsin (100–300 μg/mL), and pepsin (100–300 μg/mL; P > 0.05), but decreased significantly at extreme environments (121°C, pH 1 or 12; P < 0.05) compared with that in the control group (37°C, pH = 7, without any protease). In conclusion, our findings indicated that B. subtilis HH2 could increase surfactin expression in an appropriate cellulose environment and thus provide benefits to improve the intestinal health of herbivores.

Highlights

  • Bacillus subtilis is a widely used animal intestinal probiotic that can adapt well living in animal intestines and secrete a variety of carbohydrate hydrolase enzymes and antibiotics to facilitate host diet utilization and pathogen inhibition, thereby balancing the gut microbiome [1, 2]

  • We found a bacterial model B. subtilis strain HH2 isolated from the feces of a healthy giant panda; this strain showed a good adaptation to the herbivore intestinal cellulose environment and exhibited several probiotic functions based on transcriptional regulation [7]

  • The surfactin gene sfp was identified by polymerase chain reaction (PCR) and reverse transcription (RT)-PCR from the B. subtilis HH2 genome and transcriptome, respectively

Read more

Summary

Introduction

Bacillus subtilis is a widely used animal intestinal probiotic that can adapt well living in animal intestines and secrete a variety of carbohydrate hydrolase enzymes and antibiotics to facilitate host diet utilization and pathogen inhibition, thereby balancing the gut microbiome [1, 2]. B. subtilis can utilize a variety of nutrients, including glucose, sucrose, and galactose, for surfactin production [5], the role of cellulose, which is the most abundant substance in the intestines of many herbivores, such as giant pandas, cows, and sheep, remains unknown. We found a bacterial model B. subtilis strain HH2 isolated from the feces of a healthy giant panda; this strain showed a good adaptation to the herbivore intestinal cellulose environment and exhibited several probiotic functions based on transcriptional regulation [7]. The secretion and antibacterial effects of surfactin from this probiotic candidate in the presence of high-fiber conditions remain unclear. In this study we try to assess the cellulose-dependent expression and antibacterial characteristics of surfactin from B. subtilis HH2

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.