Abstract

Cellulose/chitosan composites were successfully prepared in a new and basic-based solvent system, ethylene diamine/potassium thiocyanate (EDA/KSCN), by dissolving cellulose and chitosan in 70/30 (w/w) EDA/KSCN at −19 °C, and then coagulating in methanol. Wide angle X-ray diffraction studies revealed that the EDA/KSCN solvent system is capable of disrupting the hydrogen bonds in both cellulose and chitosan and increase the amorphous regions. Stability tests proved that the composites are stable in acidic aqueous solution due to the hydrogen bonds formed between cellulose and chitosan. This is the first time to dissolve chitosan in a basic-based solvent system and prepare cellulose/chitosan composites in a straightforward way. The adsorption of heavy metal ions (Cu2+, Cd2+, and Pb2+) onto the cellulose/chitosan composites was investigated. The adsorption capacity is highly dependent on pH and the maximum metal uptake was obtained at pH 5.0. Increasing initial metal concentration enhanced the diffusion of metal ions to the composite surface and therefore the metal removal efficiency. Higher percentage of chitosan in the composites also led to higher metal adsorption. The results indicated that the prepared cellulose/chitosan (1:1) composite can adsorb 0.53 mmol/g Cu2+, 0.28 mmol/g Cd2+ and 0.16 mmol/g Pb2+ ions at pH 5.0. The Freundlich model and the pseudo-second-order model were in good agreement with the adsorption isotherms and kinetics, respectively. X-ray photoelectron spectroscopy studies indicated that the binding of heavy metal ions is attributed to the nitrogen atoms of amino groups in chitosan. The composites can be reused for metal removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call