Abstract

The application of biodegradable hydrogels in medical field has drawn great attention because their networked structure provided ideal spaces for drug loading and cell growth. In this research, the boronic acid was coupled onto carboxyethyl cellulose (CMC) to synthesize boronic acid grafted CMC (CMC-BA) conveniently and self-healing hydrogel was fabricated with polyvinyl alcohol (PVA) crosslinking through dynamic boronic ester bond. The CMC-BA/PVA hydrogel showed good biocompatibility and could be degraded by cellulase and in vivo. The hydrogel formed fast fit for localized injection to cover the irregular wounds and localize the antitumor drugs to the tumor site. The in vivo wound repairing experiment revealed the hydrogel could form airtight adhesion to the wound site to reduce blood loss and accelerate the wound repairing rate. The hydrogel as a drug release carrier also reduced the acute in vivo toxicity of DOX with antitumor performance well preserved through a controlled release profile. Based on the above advantages, the CMC-based hydrogel with boronic ester connection should have great potential in biomedical areas with profitable future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.