Abstract

The utilization of cellulose for enhancing the strength, the PLA has received significant attention, however, poor interfacial compatibility of solid cellulose with PLA matrix still hinders their broader application. Herein, highly compatible cellulose-based polypropoxy ether carboxylates (CPPEC) were firstly manufactured via propoxylation of cellulose and following esterification with acetic acid, butyric acid, as well as oleic acid, respectively. Liquid CPPEC delivered excellent performances to PLA, especially, the values of elongation at break and low-temperature resistance of PLA blended with cellulose-based polypropoxy ether acetate (PLA/CPPEA) were respectively increased by 630.9 % and 146.3 % compared with those of neat PLA due to the synergistic effect of propyl and methyl groups in CPPEC with PLA matrix. Additionally, migration resistance of PLA/CPPEA increased 14.3 and 11.2 times, respectively, compared with those of PLA specimens blended with epoxidized soybean oil and dioctyl phthalate. All findings suggest that the CPPEC is suitable for large-scale application in the PLA industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call