Abstract

Cellulose was isolated from waste coconut husk (Cocos nucifera) via alkali and single bleaching treatment. The isolated cellulose (CH-A-1B) was found to have residual lignin which imparts amorphous character to the polymer matrix as confirmed by X-ray diffraction analysis (XRD). Fourier transform infrared (FTIR) peak at 1507 cm−1 confirmed the presence of lignin and the appearance of three new peaks at 1320, 1416, and 1595 cm−1 showed successful attachment of carboxymethyl group onto the cellulose backbone. Carboxymethylation of cellulose from CH-A-1B produced carboxymethyl cellulose (CMC) with lower crystallinity compared to that of the double bleaching treatment cellulose (CH-A-2B). The CMC film prepared by solvent-casting method from CH-A-1B using 38 wt% NaOH possessed the highest conductivity of σ = 4.82 × 10−4 mS cm−1. The electrochemical properties of the CMC polymer electrolyte and the degree of crystallinity of the polymer matrix were found to be influenced by the amount of lignin content which acts as a natural plasticizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.