Abstract

Many amines with high toxicity always cause a serious threat to the ecological environment and human health; thus, their detection is important. Herein, a dual-mode colorimetric and ratiometric fluorescent sensor based on cellulose for detecting amines has been constructed by a new strategy. This sensor is made of a “negative response” indicator (Lum-MDI-CA) and a “positive response” indicator (perylene tetracarboxylic acid, PTCA). Lum-MDI-CA was obtained by attaching luminol onto cellulose chains, which emitted blue fluorescence and was quenched upon contact with amines. A possible mechanism of fluorescence quenching phenomenon is proposed by the intramolecular charge transfer (ICT) of Lum-MDI-CA. Subsequently, by simply mixing Lum-MDI-CA with PTCA, a dual-mode fluorescence sensor was designed for visual detection and classification of amines. When adding ammonia (NH3), morpholine (MOR), benzylamine (BNZ), diethylamine (DEA), and triethylamine (TEA), respectively, the dual-mode sensor showed visible different color changes under both UV light and daylight. In addition, owing to the excellent processibility and formability of cellulose acetate backbone, the prepared sensor can be easily processed into different material forms, including inks, coatings, films, and fibers, which still exhibit excellent fluorescence emission. Such sensors based on cellulose fluorescent materials are of great value in anti-counterfeiting and information encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.