Abstract

Cellulose, combined with lignin in some instances, was used to prepare mats made of fibers preferentially oriented in one direction. The aim of this study was evaluating the influence of this polysaccharide on the end properties of the mats when a thermoplastic polymer (in this case recycled polyethylene terephthalate; PET) is used as the primary component of solutions subjected to electrospinning. All of the prepared mats were composed mostly of ultrathin fibers. The mechanical properties were evaluated in the preferred and perpendicular directions of the alignment of the fibers. The storage and elastic moduli, as well as the tensile strength, were higher in the preferred direction. Cellulose led to mats with higher Tg PET values, indicating interactions at the molecular level between the chain segments of both polymers. One of the cellulose mats, (PETC-2), showed a superior alignment index (AI = 0.72 ± 0.03) and a higher average preferred orientation (APO = 88 ± 1°), which, in turn, led to higher mechanical properties, storage modulus, tensile strength, and elastic modulus when evaluated in the preferred direction of fiber alignment (PETC-2 dir), compared to the others. The results reveal that cellulose can be used to tune various properties of mats based on thermoplastics, thereby significantly increasing the range of applications of these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.