Abstract

Cellulose aerogel membranes (CAMs) are proposed as a matrix for gel polymer electrolyte to the fabrication of lithium-ion batteries (LIBs) with superior thermal stability. The CAMs are obtained from a cellulose-ionic liquid solution via a dissolution-regeneration-supercritical drying route. The presence of high porosity, the nanoporous network structure, and numerous polar hydroxyl groups benefits the quick absorption of liquid electrolytes for gelation of the CAMs and improves the ionic conductivity of the gelled CAMs. LIBs assembled with the gelled CAMs display excellent electrochemical performance at room temperature, and more importantly, the intrinsic thermal resistance of cellulose allows the LIBs to run stably for at least 30 min at working temperatures as high as 120 °C. The CAMs, with their excellent thermal stability, are promising for the development of highly safe, cost-effective, and high-performance LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.