Abstract
Advanced manufacturing technologies for efficient catalytic materials have triggered the rational design of catalysts as well as extensive investigation into preparative methodologies. Herein, we report the preparation of new versatile cellulose acetate/polyurethane (CA/PU) blends for efficient immobilization of CeO2 nanoparticles, the appropriate composition of polymer mixture being chosen after rigorous analysis (SEM, FTIR, optical, mechanical). The band gap energy for hybrid films ranged between 3.02 eV and 2.05 eV, the lowest value being measured for the film with Co-doped CeO2 NPs (B3 film). The best results in photodegradation of methylene blue under visible-light irradiation was attained after 50 min for B3 film (rate constant k = 45.34× 10−3 min−1), while the total mineralization of MB in the same conditions as evaluated by HPLC-ESI MS and TOC analyses was achieved after 90 min. Effect of co-ions (SO42−, Cl− or NO3−) on photocatalytic performance was studied, and scavenger tests were used to identify the active species involved in the photocatalytic mechanism. Also, the photocatalytic efficiency of B3 sample was tested for rhodamine B, metronidazole and 4-nitrophenol degradation. Evaluation of the stability and integrity of hybrid film after 5 catalysis cycles reveal that the photocatalytic potential is retained with no substantial structural changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.