Abstract

To adequately reduce new HIV infections, development of highly effective pre-exposure prophylaxis (PrEP) against HIV infection in women is necessary. Cellulose acetate phthalate (CAP) is a pH sensitive polymer with HIV-1 entry inhibitory properties. Dolutegravir (DTG) is an integrase strand transfer inhibitor with potent antiretroviral activity. DTG delivered in combination with CAP may significantly improve current PrEP against HIV. In the present study, the development of DTG-loaded CAP nanoparticles incorporated in thermosensitive (TMS) gel at vaginal pH 4.2 and seminal fluid pH 7.4 is presented as proof-of-concept for improved PrEP. Water–oil–in–water homogenization was used to fabricate DTG-loaded CAP nanoparticles (DTG–CAP–NPs). Size, polydispersity, and morphological analyses illustrate that DTG–CAP–NPs were smooth and spherical, ≤200 nm in size, and monodispersed with a polydispersity index PDI ≤ 0.2. The drug encapsulation (EE%) and release profile of DTG–CAP–NPs was determined by HPLC analysis. The EE% of DTG in DTG–CAP–NPs was evaluated to be ~70%. The thermal sensitivity of the TMS gel was optimized and the pH dependency was evaluated by rheological analysis. DTG release studies in TMS gel revealed that DTG–CAP–NPs were stable in TMS gel at pH 4.2 while DTG–CAP–NPs in TMS gel at pH 7.4 rapidly release DTG (≥80% release within 1 h). Cytotoxicity studies using vaginal cell lines revealed that DTG–CAP–NPs were relatively non-cytotoxic at concentration <1 µg/mL. Confocal microscopic studies illustrate that ≥98% cells retained DTG–CAP–NPs intracellularly over seven days. Antiretroviral drug loaded nanocellulose fabrications in TMS gel delivered intravaginally may enhance both microbicidal and antiretroviral drug efficacy and may present a novel option for female PrEP against HIV.

Highlights

  • Acquired immune deficiency syndrome (AIDS) caused by HIV infection is one of the insurmountable healthcare problems of the 21st century

  • The encapsulation efficiency (EE%) of Cellulose acetate phthalate (CAP)–NPs for DTG loading was over 70%

  • Cellulose Acetate Phthalate Nanoparticle (CAP–NP) may provide an important modality for the delivery of both microbicide function and antiretroviral drugs (ARVs) drug for female pre-exposure prophylaxis (PrEP)

Read more

Summary

Introduction

Acquired immune deficiency syndrome (AIDS) caused by HIV infection is one of the insurmountable healthcare problems of the 21st century. Polymers 2017, 9, 423 are living with HIV-1, and, in 2015, 2.1 million new HIV infections were reported [1,2]. Of those newly infected individuals, 47% were women and 8% were children less than 15 years old [1]. Young people between the ages of 15 and 24 accounted for 35% of all new adult infections, with infection rates of young women in this age group accounting for 20% of the global sum of HIV infections [1,2]. HIV/AIDS remains the leading cause of death for pre-menopausal women worldwide [5]. Given international efforts to reduce the annual global HIV infection rates by 90% by 2030 [1], highly efficacious therapeutic and preventative

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call