Abstract

The prevalence of pharmaceutical compounds in surface and groundwater presents a rising threat to human health. As such, the search for novel materials that serve to avoid their release into the environment or for the remediation once in the water effluent is of utmost importance. The present work describes the fabrication of a cellulose acetate membrane modified with the block copolymer poly(4-vinylpyridine-b-ethylene oxide) (P4VP-b-PEO) crafted for the specific targeting and adsorption of electron-deficient pharmaceuticals (EDPs). The EDPs under study were sulfamethoxazole, sulfadiazine, and omeprazole. The results as part of this work present a thorough characterization of the prepared membranes by FTIR, contact angle measurement, and SEM images. Moreover, results show that the adsorptive character of the membrane correlates with the relative electron deficiency and spatial orientation of the contaminant. Interestingly, the addition of nominal 1% P4VP-b-PEO to the cellulose matrix helps to increase the adsorption efficiency of the membranes by at least 2-fold in most cases. For the compounds studied, the prepared membrane has a higher efficiency toward omeprazole followed by sulfamethoxazole and sulfadiazine. This work may serve to inspire the design and fabrication of selective soft materials for the adsorption and remediation of contaminants of emerging concern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call