Abstract

The objective of this work is to find a simple and environmentally friendly way to prepare high efficiency adsorbent from maize stover by cellulase. The characteristics of the original maize cob (MC), maize husk (MH), maize straw (MS), and its cellulase modified form (MMC, MMH and MMS) were detected by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Batch adsorption experiments indicated that the adsorption followed the pseudo-second-order kinetic model, and the adsorption capacity of sulfamethazine (SMT) to adsorbents was in order of MMC > MMS > MMH > MC > MS > MH. The adsorption isotherm data of SMT on original materials were consistent with Freundlich models, while Henry models were more suitable for the modified materials. The adsorption was affected by pH and ionic strength which demonstrated the interaction between π-π EDA and H bonds might be an important factor in the adsorption of SMT on maize stover. The results of FTIR and two-dimensional correlation spectroscopy (2D-COS) analysis further demonstrated that oxhydryl and aromatic structures in the modified maize stover could interact with SMT via H bonds and π-π EDA interaction, respectively. This work provides a green way to remove SMT from aqueous solution, and new insights into the mechanisms of adsorption of SMT on stover materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call