Abstract

BackgroundOn-site cellulase production using locally available lignocellulosic biomass (LCB) is essential for cost-effective production of 2nd-generation biofuels. Cellulolytic enzymes (cellulases and hemicellulases) must be produced in fed-batch mode in order to obtain high productivity and yield. To date, the impact of the sugar composition of LCB hydrolysates on cellulolytic enzyme secretion has not been thoroughly investigated in industrial conditions.ResultsThe effect of sugar mixtures (glucose, xylose, inducer) on the secretion of cellulolytic enzymes by a glucose-derepressed and cellulase-hyperproducing mutant strain of Trichoderma reesei (strain CL847) was studied using a small-scale protocol representative of the industrial conditions. Since production of cellulolytic enzymes is inducible by either lactose or cellobiose, two parallel mixture designs were performed separately. No significant difference between inducers was observed on cellulase secretion performance, probably because a common induction mechanism occurred under carbon flux limitation. The characteristics of the enzymatic cocktails did not correlate with productivity, but instead were rather dependent on the substrate composition. Increasing xylose content in the feed had the strongest impact. It decreased by 2-fold cellulase, endoglucanase, and cellobiohydrolase activities and by 4-fold β-glucosidase activity. In contrast, xylanase activity was increased 6-fold. Accordingly, simultaneous high β-glucosidase and xylanase activities in the enzymatic cocktails seemed to be incompatible. The variations in enzymatic activity were modelled and validated with four fed-batch cultures performed in bioreactors. The overall enzyme production was maintained at its highest level when substituting up to 75% of the inducer with non-inducing sugars.ConclusionsThe sugar substrate composition strongly influenced the composition of the cellulolytic cocktail secreted by T. reesei in fed-batch mode. Modelling can be used to predict cellulolytic activity based on the sugar composition of the culture-feeding solution, or to fine tune the substrate composition in order to produce a desired enzymatic cocktail.

Highlights

  • On-site cellulase production using locally available lignocellulosic biomass (LCB) is essential for cost-effective production of 2nd-generation biofuels

  • Design of the study Since glucose and xylose are the main constituting monomers of LCB, they were chosen to assess the effect of sugars found in hydrolysates

  • Since none of them induced cellulase production by T. reesei, glucose and xylose mixtures were supplemented with an inducer

Read more

Summary

Introduction

On-site cellulase production using locally available lignocellulosic biomass (LCB) is essential for cost-effective production of 2nd-generation biofuels. Cellulolytic enzymes (cellulases and hemicellulases) must be produced in fed-batch mode in order to obtain high productivity and yield. The bioconversion of lignocellulosic biomass (LCB) into biofuels or chemicals such as bioethanol requires cellulolytic enzymes, e.g. cellulases and hemicellulases, in order to hydrolyse both cellulose and hemicellulose into their respective monomeric sugars [1]. Industrial aspects of cellulolytic enzymes production Complete cellulose hydrolysis requires substantial cellulase loadings. On-site production allows direct use of the LCB resource available locally. Even in this case, economic studies concluded that much progress was still required to decrease cellulase costs [4,5,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call