Abstract

Development of blood vessels remains a big challenge for vascular tissue engineering. We recently demonstrated that poly(allylamine hydrochloride)/poly(styrene sulfonate) (PAH/PSS) films are excellent substrates for vascular progenitor cell differentiation. However, no intact cell sheets could be harvested. Using a spraying procedure, we develop here a user-friendly technology for the development of small blood vessels based on alginate membranes. The key point of our approach is based on a multilayered PAH/PSS film built on micro-textured alginate gels, about 140 μm thick and which can be peeled off. The alginate, calcium chloride and polyelectrolyte solutions are sprayed on a vertical glass substrate. Due to the drainage of the calcium chloride solution on the adsorbed alginate layer, an oriented micro-textured gel is obtained. The PAH/PSS film, built on top of the gel, induces a good proliferation without phenotype alteration of smooth muscle cells. Parallel micro-textures on the top of the gel allow the orientation of cells. After peeling off the substrate, the cellularized membrane is rolled around a mandrel. Confocal microscopy observations show the formation of concentric layers with a presence of cells. This work represents the initial stages of a new, original blood vessel reconstruction strategy via tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.