Abstract

Membrane budding is essential for the egress of many enveloped viruses, and this process shares similarities with the biogenesis of multivesicular bodies (MVBs). In eukaryotic cells, the budding of intraluminal vesicles (IVLs) is mediated by the endosomal sorting complex required for transport (ESCRT) machinery and some viruses require ESCRT machinery components or functions to bud from host cells. Baculoviruses, such as Autographa californica multiple nucleopolyhedrovirus (AcMNPV), enter host cells by clathrin-mediated endocytosis. Viral DNA replication and nucleocapsid assembly occur within the nucleus. Some progeny nucleocapsids are subsequently trafficked to, and bud from, the plasma membrane, forming budded virions (BV). To determine whether the host ESCRT machinery is important or necessary for AcMNPV replication, we cloned a cDNA of Spodoptera frugiperda VPS4, a key regulator for disassembly and recycling of ESCRT III. We then examined viral infection and budding in the presence of wild-type (WT) or dominant negative (DN) forms of VPS4. First, we used a viral complementation system, in combination with fluorescent tags, to examine the effects of transiently expressed WT or DN VPS4 on viral entry. We found that dominant negative VPS4 substantially inhibited virus entry. Entering virus was observed within aberrant compartments containing the DN VPS4 protein. We next used recombinant bacmids expressing WT or DN VPS4 proteins to examine virus egress. We found that production of infectious AcMNPV BV was substantially reduced by expression of DN VPS4 but not by WT VPS4. Together, these results indicate that a functional VPS4 is necessary for efficient AcMNPV BV entry into, and egress from, insect cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call