Abstract
In nanotechnology, tissue engineering proposes obtaining nanomaterials of natural or synthetic origin, looking to incorporate components that exhibit a defined shape, diameter, colloidal stability, and biological identity to promote and regulate the events that occur in a cardiac cell microenvironment. This research aimed to evaluate cellular viability in an in vitro model of human fetal ventricular cardiomyocytes on interaction with gold nanoparticles biosynthesized using silk fibroin from silk fibrous waste. The Physicochemical properties were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, electrokinetic potential, and scanning transmission electron microscopy. Moreover, the MTT assay was used to determine the cell viability of cardiomyocytes exposed to gold nanoparticles. The results showed that the variation of the pH of the reaction allows the synthesis of different geometries of nanoparticles with diameters between 6 and 334 nm. Furthermore, it was found that the nanoparticles with a tendency to sphericity favor the cell viability of cardiomyocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.