Abstract
The present study was undertaken to examine the cellular uptake of stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic acid (18:3), and their effects on synthesis and secretion of lipids in Hep-G2 cells. The cells were grown for 6 days in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum. On day 7, cells were incubated in a serum-free DMEM containing 0.25–1.0 mM of 18:0, 18:1, 18:2 or 18:3. The cellular uptake of these fatty acids was almost linear during the 4 hr incubation period, and no significant differences were noted among the fatty acids tested, regardless of their degree of unsaturation. The treatment of cells with 1.0 mM of these fatty acids stimulated triglyceride (TG) synthesis nearly ten-fold and phospholipid (PL) synthesis approx. two-fold compared with those of the control. The lipoprotein-TG secretion also increased and was the highest with 18:1 followed in descending order by 18:2, 18:3, and 18:0. The fatty acid treatment of cells also significantly increased the incorporation of 14C-acetate into the cellular and lipoprotein cholesterol compared with that of the control ( p<0.05). In addition, notable changes occurred in the fatty acid composition of cellular and medium lipids, which were enriched with the particular fatty acid present in the incubation medium. The findings that 18:0, 18:1, 18:2, and 18:3 were taken up by Hep-G2 cells at almost identical rates demonstrate that differences in the cellular synthesis of lipids and their secretion are attributable to the metabolic specificity of those fatty acids, rather than variable rates of their uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biochemistry and Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.