Abstract
A number of studies have shown that a short peptide, the protein transduction domain (PTD) derived from the HIV-1 Tat protein (Tat-PTD) improved cellular uptake in vitro and distribution in vivo of recombinant proteins bearing such PTDs when administered systemically. To investigate the effects of Tat-PTD addition on the subcellular localization of the lysosomal enzyme galactocerebrosidase (GALC, EC 3.2.2.46) and with a view towards designing improved therapeutic strategies for Krabbe disease (globoid cell leukodystrophy), mouse GALC was tagged C-terminally with the Tat-PTD. Compared with unmodified GALC, GALC bearing a Tat-PTD, a myc epitope and 6 consecutive His residues [GALC-TMH (Tat-PTD, a myc epitope and 6 consecutive His residues)] was found to be secreted more efficiently. Also, GALC-TMH was found to be taken up by cells both via mannose-6-phosphate receptor (M6PR)-mediated endocytosis as well as by M6PR-independent mechanisms. GALC-TMH displayed increased M6PR-independent uptake in fibroblasts derived from twitcher mice (a murine model of globoid cell leukodystrophy) and in neurons derived from the mouse brain cortex compared with GALC lacking a Tat-PTD. Immunocytochemical analyses revealed that Tat-modified GALC protein co-localized in part with the lysosome-associated membrane protein-1. Complete correction of galactosylceramide accumulation was achieved in twitcher mouse fibroblasts lacking GALC activity following addition of GALC-TMH. Therefore, GALC-TMH not only maintained the features of the native GALC protein including enzymatic function, intracellular transport and location, but also displayed more efficient cellular uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.