Abstract
A cellular model for a computer simulation of dendrite growth in alloys is described. In this model temperature and concentration at the interphase boundary are not prescribed as boundary conditions but their evolution is calculated with the use of transport equations and a kinetic equation which relates the local solidification rate in each cell containing the interface with thermo-chemical conditions and an interface curvature averaged through the cell. The simulation was carried out for Al-Si alloys. The dependence of the growth velocity and tip radius on the supercooling are computed and compared with analytical model data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.