Abstract

Eclosion hormone (EH) is a 62 amino acid neuropeptide that plays an integral role in triggering ecdysis behavior at the end of each molt. At least three populations of cells are thought to be targets for EH, each of which show an EH-stimulated increase in the intracellular messenger guanosine 3′, 5′ cyclic monophosphate (cGMP). These EH target cells are believed to include two pairs of neurons in each of the ganglia of the ventral nerve cord (VNC) that contain the neuropeptide crustacean cardioactive peptide (CCAP), the Inka cells of the peripheral epitracheal glands and intrinsic non-neuronal cells in the abdominal transverse nerves. This review describes likely signaling cascades that result in the EH-stimulated cGMP increase. Several lines of evidence suggest the involvement of a novel nitric oxide insensitive soluble guanylyl cyclase (GC). A novel GC with these properties has recently been identified and we also present evidence to suggest that it is activated by EH and describe possible pathways for its activation. In addition, we review our current knowledge on the cellular and molecular events that take place downstream of the increase in cGMP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call