Abstract

1. We use the dynamic clamp to add the slowly inactivating and slowly recovering K+ conductance Kv1.3 to cultured stomatogastric ganglion neurons. 2. Introduction of Kv1.3 produced long delays to firing during depolarization. Additionally, the slow recovery from inactivation produced an increase in neuronal excitability after a depolarizing input that outlasted the input by many seconds. Finally, when introduced into bursting neurons, Kv1.3 produced a long-lasting depolarization-induced switch between tonic and burst firing. 3. These data demonstrate that the slow kinetics of a K+ conductance can produce a form of cellular short-term memory that is independent of any changes in synaptic efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.