Abstract

The growth plate is the responsible for longitudinal bone growth. It is a cartilaginous structure formed by chondrocytes that are continuously undergoing a differentiation process that starts with a highly proliferative state, followed by cellular hypertrophy, and finally tissue ossification. Within the growth plate chondrocytes display a characteristic columnar organization that potentiates longitudinal growth. Both chondrocyte organization and hypertrophy are highly regulated processes influenced by biochemical and mechanical stimuli. These processes have been studied mainly using in vivo models, although there are few computational approaches focused on the rate of ossification rather than events at cellular level. Here, we developed a model of cellular behavior integrating biochemical and structural factors in a single column of cells in the growth plate. In our model proliferation and hypertrophy were controlled by biochemical regulatory loop formed between Ihh and PTHrP (modeled as a set of reaction-diffusion equations), while cell growth was controlled by mechanical loading. We also examined the effects of static loading. The model reproduced the proliferation and hypertrophy of chondrocytes in organized columns. This model constitutes a first step towards the development of mechanobiological models that can be used to study biochemical interactions during endochondral ossification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.