Abstract
Coronaviruses are causing epizootic diseases and thus are a substantial threat for both domestic and wild animals. These viruses depend on the host translation machinery to complete their life cycle. The current paper identified cellular RNA-binding proteins (RBPs), La-related protein 4 (LARP4) and polyadenylate-binding protein cytoplasmic 1 (PABPC1), as critical regulators of efficient translation of the coronavirus porcine epidemic diarrhea virus (PEDV) mRNA. In Vero cells, PEDV infection caused LARP4 to migrate from the nucleus to the cytoplasm in a chromosome region maintenance1 (CRM1)-independent pathway. In the absence of the nuclear export signal of LARP4, viral translation was not promoted by LARP4. A further study unveiled that the cytoplasmic LARP4 binds to the 3′-terminal untranslated region (3′UTR) of PEDV mRNA with the assistance of PABPC1 to facilitate viral translation. LARP4 knockdown reduced the promotion of the PABPC1-induced 3′UTR translation activity. Moreover, the rabbit reticulocyte lysate (RRL) system revealed that the prokaryotic expressed protein LARP4 and PABPC1 enhance PEDV mRNA translation. To our knowledge, this is the first study demonstrating that PEDV induces nucleo-cytoplasmic shuttling of LARP4 to enhance its own replication, which broadens our insights into how viruses use host's RBPs for the efficient translation of viral mRNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.