Abstract
Virus particles (virions) often contain not only virus-encoded but also host-encoded proteins. Some of these host proteins are enclosed within the virion structure, while others, in the case of enveloped viruses, are embedded in the host-derived membrane. While many of these host protein incorporations are likely accidental, some may play a role in virus infectivity, replication and/or immunoreactivity in the next host. Host protein incorporations may be especially important in therapeutic applications where large numbers of virus particles are administered. Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and a candidate vaccine, gene therapy and oncolytic vector. Using mass spectrometry, we previously examined cell type dependent host protein content of VSV virions using intact (“whole”) virions purified from three cell lines originating from different species. Here we aimed to determine the localization of host proteins within the VSV virions by analyzing: i) whole VSV virions; and ii) whole VSV virions treated with Proteinase K to remove all proteins outside the viral envelope. A total of 257 proteins were identified, with 181 identified in whole virions and 183 identified in Proteinase K treated virions. Most of these proteins have not been previously shown to be associated with VSV. Functional enrichment analysis indicated the most overrepresented categories were proteins associated with vesicles, vesicle-mediated transport and protein localization. Using western blotting, the presence of several host proteins, including some not previously shown in association with VSV (such as Yes1, Prl1 and Ddx3y), was confirmed and their relative quantities in various virion fractions determined. Our study provides a valuable inventory of virion-associated host proteins for further investigation of their roles in the replication cycle, pathogenesis and immunoreactivity of VSV.
Highlights
Vesicular stomatitis virus (VSV, family Rhabdoviridae) is a prototypic nonsegmented negative-strand RNA virus serving as a model for other human and animal pathogens including other rhabdoviruses such as rabies virus
The matrix (M) protein is responsible for nucleocapsid condensation and is the primary driving force behind viral budding through the host cell plasma membrane, whereby the virion obtains its lipid bilayer envelope
The purity of the resulting material was examined by electron microscopy (EM)
Summary
Vesicular stomatitis virus (VSV, family Rhabdoviridae) is a prototypic nonsegmented negative-strand RNA virus (order Mononegavirales) serving as a model for other human and animal pathogens including other rhabdoviruses such as rabies virus. Currently two phase I human clinical trials evaluating the safety of the VSV-based HIV vaccines (Clinicaltrials.gov, trials NCT01438606 and NCT01578889) are currently in progress. A phase I human clinical trial using replication-competent oncolytic VSV against hepatocellular carcinoma is in progress (trial NCT01628640). VSV replicates in the cytoplasm and contains a nonsegmented, negative-strand RNA genome of approximately 11 kb encoding five viral proteins, all of which are included in the mature virion. The RdRp is associated with the nucleocaspid (N) protein encapsidated viral genome, together forming the ribonucleoprotein (RNP) complex. Embedded in that envelope is the transmembrane glycoprotein (G), which is essential for receptor binding and cell entry (reviewed in [5])
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.