Abstract

Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play an important role in inducing primary antigen-specific immune responses. Some viruses have evolved to specifically target DCs to circumvent the host immune responses for their persistence in the host. One example is porcine reproductive and respiratory syndrome virus (PRRSV) that causes a persistent infection in pigs through modulating DC-mediated antiviral response. To study the cellular protein responses in PRRSV-infected monocyte-derived dendritic cells (MoDCs), two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the differentially expressed proteins in PRRSV-infected MoDCs and the control cells. A total of 252 cellular proteins in MoDCs that were significantly altered at different time periods post-infection were identified. Differentially expressed proteins that are involved in the endocytosis pathway, actin cytoskeleton network, antigen processing and presentation, JAK-STAT signaling pathway and PRRSV receptors were identified and further analyzed. Among them, the expression changes of STAT1, Mx1, PICALM and SLA-DR were further verified by Western blotting. The protein profiles associated with PRRSV infection of MoDCs should offer novel insights to further investigation of PRRSV-mediated antiviral evasion mechanism and its pathobiology in swine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.