Abstract

α-synuclein (αS) is an abundant, neuronal protein that assembles into fibrillar pathological inclusions in a spectrum of neurodegenerative diseases that include Lewy body diseases (LBD) and Multiple System Atrophy (MSA). The cellular and regional distributions of pathological inclusions vary widely between different synucleinopathies contributing to the spectrum of clinical presentations. Extensive cleavage within the carboxy (C)-terminal region of αS is associated with inclusion formation, although the events leading to these modifications and the implications for pathobiology are of ongoing study. αS preformed fibrils can induce prion-like spread of αS pathology in both invitro and animal models of disease. Using C truncation-specific antibodies, we demonstrated here that prion-like cellular uptake and processing of αS preformed fibrils resulted in two major cleavages at residues 103 and 114. A third cleavage product (122 αS) accumulated upon application of lysosomal protease inhibitors. Invitro, both 1-103 and 1-114 αS polymerized rapidly and extensively in isolation and in the presence of full-length αS. 1-103 αS also demonstrated more extensive aggregation when expressed in cultured cells. Furthermore, we used novel antibodies to αS cleaved at residue Glu114, to assess x-114 αS pathology in postmortem brain tissue from patients with LBD and MSA, as well as three different transgenic αS mouse models of prion-like induction. The distribution of x-114 αS pathology was distinct from that of overall αS pathology. These studies reveal the cellular formation and behavior of αS C-truncated at residues 114 and 103 as well as the disease dependent distribution of x-114 αS pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call