Abstract
Piezoelectric polymers characterized by flexibility are sought for applications in microelectronics, medicine, telecommunications, and everyday devices. The objective of this work was to obtain piezoelectric polymeric composites with a cellular structure and to evaluate their usefulness in practice. Composites based on polyolefins (isotactic-polypropylene and polyethylene) with the addition of aluminosilicate fillers were manufactured by extrusion, and then polarized in a constant electric field at 100 V/µm. The content of mineral fillers up to 10 wt% in the polymer matrix enhances its electric stability and mechanical strength. The value of the piezoelectric coefficient d33 attained ~150 pC/N in the range of lower stresses and ~80 pC/N in the range of higher stresses, i.e., at ~120 kPa. The materials exhibited high durability in time, therefore, they can be used as transducers of mechanical energy of the human motion into electric energy. It was demonstrated that one shoe insert generates an energy of 1.1 mJ after a person walks for 300 s. The miniaturized integrated circuits based on polyolefin composites may be applied for the power supply of portable electronics. Due to their high sensitivity, they can be recommended for measuring the blood pulse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.