Abstract
This paper considers two-dimensional interference-limited cellular radio systems. It introduces the shotgun cellular system that places base stations randomly and assigns channels randomly. Such systems are shown to provide lower bounds to cellular performance that are easy to compute, independent of shadow fading, and apply to a number of design scenarios. Traditional hexagonal systems provide an upper performance bound. The difference between upper and lower bounds is small under operating conditions typical in modern TDMA and CDMA cellular systems. Furthermore, in the strong shadow fading limit, the bounds converge. To give insights into the design of practical systems, several variations are explored including mobile access methods, sectorizing, channel assignments, and placement with deviations. Together these results indicate cellular performance is very robust and little is lost in making rapid minimally planned deployments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.