Abstract

The amygdala complex substantially contributes to the generation and propagation of focal seizures in patients suffering from temporal lobe epilepsy (TLE). A cellular substrate for increased excitability in the human amygdala, however, remains to be identified. Here, we analyzed the three-dimensional morphology of 264 neurons from different subregions of the amygdaloid complex obtained from 17 "en bloc" resected surgical specimens using intracellular Lucifer Yellow (LY) injection and confocal laser scanning microscopy. Autopsy samples from unaffected individuals ( n=3, 20 neurons) served as controls. We have identified spine-laden, spine-sparse and aspinous cells in the lateral, basal, accessory basal and granular nuclei. Semiquantitative analysis points to significant changes in neuronal soma size, number of dendrites and spine densities in specimens from epilepsy patients compared to controls. Neuronal somata in the epilepsy group were smaller compared to controls ( P<0.01), neurons had fewer first-order dendrites ( P<0.01), whereas the maximum density of spines per dendritic segment in these cells was increased in TLE patients ( P<0.01). There were also dendritic alterations such as focal constrictions or spine bifurcations. These changes were consistent between amygdaloid subregions. The dendritic morphology of amygdaloid neurons in TLE patients points to substantial changes in synaptic connectivity and would be compatible with altered neuronal circuitries operating in the epileptic human amygdala. Although the morphological alterations differ from those described in hippocampal subregions of a similar cohort of TLE patients, they appear to reflect a characteristic pathological substrate associated with seizure activity/propagation within the amygdaloid complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.