Abstract

A large variety of snake toxins evolved from PLA(2) digestive enzymes through a process of 'accelerated evolution'. These toxins have different tissue targets, membrane receptors and mechanisms of alteration of the cell plasma membrane. Two of the most commonly induced effects by venom PLA(2)s are neurotoxicity and myotoxicity. Here, we will discuss how these snake toxins achieve a similar cellular lesion, which is evolutionarily highly conserved, despite the differences listed above. They cause an initial plasma membrane perturbation which promotes a large increase of the cytosolic Ca(2+) concentration leading to cell degeneration, following modes that we discuss in detail for muscle cells and for the neuromuscular junction. The different systemic pathophysiological consequences caused by these toxins are not due to different mechanisms of cell toxicity, but to the intrinsic anatomical and physiological properties of the targeted tissues and cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.