Abstract

In this report, we tested the hypothesis that cellular content of non-heme iron determined whether cytotoxic levels of nitric oxide (NO) resulted in apoptosis versus necrosis. The consequences of NO exposure on cell viability were tested in RAW264.7 cells (a cell type with low non-heme iron levels) and hepatocytes (cells with high non-heme iron content). Whereas micromolar concentrations of the NO donor S-nitroso-N-acetyl-DL-penicillamine induced apoptosis in RAW264.7 cells, millimolar concentrations were required to induce necrosis in hepatocytes. Caspase-3 activation and cytochrome c release were evident in RAW264.7 cells, but only cytochrome c release was detectable in hepatocytes following high dose S-nitroso-N-acetyl-DL-penicillamine exposure. Pretreating RAW264.7 cells with FeSO(4) increased intracellular non-heme iron to levels similar to those measured in hepatocytes and delayed NO-induced cell death, which then occurred in the absence of caspase-3 activation. Iron loading was also associated with the formation of intracellular dinitrosyl-iron complexes (DNIC) upon NO exposure. Cytosolic preparations containing DNIC as well as pure preparations of DNIC suppressed caspase activity. These data suggest that non-heme iron content is a key factor in determining the consequence of NO on cell viability by regulating the chemical fate of NO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.