Abstract

Mitochondria are central to brain cell response to ischemia, with critical roles in generation of ATP, production of free radicals, and regulation of apoptotic cell death. Changes in the permeability of the outer mitochondrial membrane to regulators of apoptosis can control ischemic cell death and this permeability is directly controlled by the Bcl-2 family of proteins. The Bcl-2 family regulate apoptosis by several mechanisms including affecting the formation of apoptotic protein-conducting pores in the outer mitochondrial membrane. The anti-apoptotic protein Bcl-2 improves neuron survival following various insults, and is protective even when administered after stroke onset in a rat model of focal ischemia. Despite intense study, the precise molecular mechanisms underlying protection by the anti-apoptotic members of the Bcl-2 family are not completely understood. This review focuses on the mechanisms by which Bcl-2 family members control the permeability of the mitochondrial membrane and influence other aspects of mitochondrial function after brain ischemia, concluding with discussion of the potential use of Bcl-2 for the treatment of cerebral ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.