Abstract

Cellular Neural Network (CeNN) has been widely adopted in image processing tasks, which is considered as a powerful paradigm for embedded devices. Recently, digital implementations of CeNNs on FPGA have attracted researchers from both academia and industry due to its high flexibility and short time-to-market. However, most existing implementations are not well optimized to fully utilize the advantages of FPGA platform with unnecessary design and computational redundancy that prevents speedup. We propose a multi-level optimization framework for energy efficient CeNN implementations on FPGAs. In particular, the optimization framework is featured with three level optimizations: system-, module-, and design-space-level, with focus on computational redundancy and attainable performance, respectively. Experimental results show that our framework can achieve an energy efficiency improvement of 3.54× and up to 3.88× speedup compared with existing implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.