Abstract

In this paper we discuss the design of a cellular neural network (CNN) to solve a class of optimization problems of importance for communication networks. The CNN optimization capabilities are exploited to implement an efficient cell scheduling algorithm in a fast packet switching fabric. The neural-based switching fabric maximizes the cell throughput and, at the same time, it is able to meet a variety of quality of service (QoS) requirements by optimizing a suitable function of the switching delay and priority of the cells. We also show that the CNN approach has advantages with respect to that based on Hopfield neural networks (HNNs) to solve the considered class of optimization problems. In particular, we exploit existing techniques to design CNNs with a prescribed set of stable binary equilibrium points as a basic tool to suppress spurious responses and, hence to optimize the neural switching fabric performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.