Abstract

In vivo clearance mechanisms of therapeutic monoclonal antibodies (mAbs) encompass both target-mediated and target-independent processes. Two distinct determinants of overall mAb clearance largely separate of target-mediated influences are non-specific cellular endocytosis and subsequent pH-dependent mAb recycling mediated by the neonatal Fc receptor (FcRn), where inter-mAb variability in the efficiency of both processes is observed. Here, we implemented a functional cell-based FcRn recycling assay via Madin-Darby canine kidney type II cells stably co-transfected with human FcRn and its light chain β2-microglobulin. Next, a series of pH-dependent internalization studies using a model antibody demonstrated proper function of the human FcRn complex. We then applied our cellular assays to assess the contribution of both FcRn and non-specific interactions in the cellular turnover for a panel of 8 clinically relevant mAbs exhibiting variable human pharmacokinetic behavior. Our results demonstrate that the interplay of non-specific endocytosis rates, pH-dependent non-specific interactions, and engagement with FcRn all contribute to the overall recycling efficiency of therapeutic monoclonal antibodies. The predictive capacity of our assay approach was highlighted by successful identification of all mAbs within our panel possessing clearance in humans greater than 5 mL/day/kg. These results demonstrate that a combination of cell-based in vitro assays can properly resolve individual mechanisms underlying the overall in vivo recycling efficiency and non-target mediated clearance of therapeutic mAbs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.