Abstract

In brain cells, various metabolites and metabolic pathways, largely of mitochondrial origin, have been shown to be compartmentalized. Attention has therefore been focused on the possible existence of mitochondrial heterogeneity in the brain at the cellular level. To determine whether mitochondria in cultured cortical and cerebellar astrocytes are heterogeneous at the single cell level, immunogold electron microscopy and an antibody against the alpha-ketoglutarate dehydrogenase component of the alpha-ketoglutarate dehydrogenase complex, a marker enzyme for the tricarboxylic acid (TCA) cycle, were employed. The number of gold particles was counted in the mitochondria of 36 and 42 cells from cultured cerebellar and cortical astrocytes, respectively. A test for random distribution (Poisson distribution) of mitochondria according to the number of gold particles was subsequently performed for every one of the 36 and 42 cells as the ratio variance/mean (= index of dispersion). This should be approximately distributed as chi2/degrees of freedom (df) = n - 1, n = number of mitochondria), if the observations obeyed a Poisson distribution. For 26 of the 36 (cerebellar astrocytes) distributions and for 28 of the 42 (cortical astrocytes) distributions a random distribution had to be rejected. These findings therefore strongly indicate that alpha-ketoglutarate dehydrogenase is heterogeneously distributed in mitochondria within individual astrocytes originating either from cerebellum or cerebral cortex. In conclusion, this study underlines the probability that mitochondrial heterogeneity at the single cell level might be extended to involve other metabolic pathways and metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.