Abstract

Cell quotas of microcystin (Q(MCYST); femtomoles of MCYST per cell), protein, and chlorophyll a (Chl a), cell dry weight, and cell volume were measured over a range of growth rates in N-limited chemostat cultures of the toxic cyanobacterium Microcystis aeruginosa MASH 01-A19. There was a positive linear relationship between Q(MCYST) and specific growth rate (mu), from which we propose a generalized model that enables Q(MCYST) at any nutrient-limited growth rate to be predicted based on a single batch culture experiment. The model predicts Q(MCYST) from mu, mu(max) (maximum specific growth rate), Q(MCYSTmax) (maximum cell quota), and Q(MCYSTmin) (minimum cell quota). Under the conditions examined in this study, we predict a Q(MCYSTmax) of 0.129 fmol cell(-1) at mu(max) and a Q(MCYSTmin) of 0.050 fmol cell(-1) at mu = 0. Net MCYST production rate (R(MCYST)) asymptotes to zero at mu = 0 and reaches a maximum of 0.155 fmol cell(-1) day(-1) at mu(max). MCYST/dry weight ratio (milligrams per gram [dry weight]) increased linearly with mu, whereas the MCYST/protein ratio reached a maximum at intermediate mu. In contrast, the MCYST/Chl a ratio remained constant. Cell volume correlated negatively with mu, leading to an increase in intracellular MCYST concentration at high mu. Taken together, our results show that fast-growing cells of N-limited M. aeruginosa are smaller, are of lower mass, and have a higher intracellular MCYST quota and concentration than slow-growing cells. The data also highlight the importance of determining cell MCYST quotas, as potentially confusing interpretations can arise from determining MCYST content as a ratio to other cell components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.