Abstract

Metabolism is highly coordinated component of the cellular activity that involves sequential chemical transformations, within a so-called metabolic network. Through these coordinated actions, living organisms acquire energy and biosynthetic precursors to maintain cellular homeostasis and function. Metabolism relies on the breaking down of macromolecules to produce energy [catabolism] and/or intermediary metabolites that are then used to construct essential building blocks for macromolecule production [anabolism]. Overall, these metabolic processes are controlled by cellular energy status: when the energy released from catabolic processes exceeds the cellular demands the storage of metabolites in the form of lipids and glycogen takes place. These phenomena have been vastly associated with the genesis of metabolic disorders, such as obesity. In recent years, we have assisted to a rediscovery of metabolism through the identification of metabolic intermediaries that act as key players on differentiation, proliferation, and function of immune cells. This recent acknowledgement of the impact of metabolism in the overall immune response originated the ground-breaking field of immunometabolism. Here, we will provide a holistic view of metabolism highlighting the biochemical principles underlying its regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.