Abstract

In the present study we investigated the effects of neonatal handling, an animal model of early experience, on spatial learning and memory, on hippocampal glucocorticoid (GR), mineralocorticoid (MR) and type 1A serotonin (5-HT1A) receptors, as well as brain derived neurotrophic factor (BDNF), and on circulating leptin levels, of male rats.MethodSpatial learning and memory following an acute restraint stress (30 min) were assessed in the Morris water maze. Hippocampal GR, MR and BDNF levels were determined immunocytochemically. 5-HT1A receptors were quantified by in vitro binding autoradiography. Circulating leptin levels, following a chronic forced swimming stress, were measured by radioimmunoassay (RIA). Data were statistically analyzed by analysis of variance (ANOVA).ResultsNeonatal handling increased the ability of male rats for spatial learning and memory. It also resulted in increased GR/MR ratio, BDNF and 5-HT1A receptor levels in the hippocampus. Furthermore, leptin levels, body weight and food consumption during chronic forced swimming stress were reduced as a result of handling.ConclusionNeonatal handling is shown to have a beneficial effect in the males, improving their cognitive abilities. This effect on behavior could be mediated by the handling-induced increase in hippocampal GR/MR ratio and BDNF levels. The handling-induced changes in BDNF and 5-HT1A receptors could underlie the previously documented effect of handling in preventing "depression". Furthermore, handling is shown to prevent other maladaptive states such as stress-induced hyperphagia, obesity and resistance to leptin.

Highlights

  • It is generally accepted that early experiences have profound influences on brain development and on adult brain function and behavior

  • Neonatal handling is shown to have a beneficial effect in the males, improving their cognitive abilities

  • This effect on behavior could be mediated by the handling-induced increase in hippocampal glucocorticoid receptors (GR)/MR ratio and brain derived neurotrophic factor (BDNF) levels

Read more

Summary

Introduction

It is generally accepted that early experiences have profound influences on brain development and on adult brain function and behavior. As adults, neonatally handled rats are less emotionally reactive, synthesize and secrete less corticotropin-releasing factor, adrenocorticotropin hormone (ACTH) and corticosterone following a variety of stressors [2], and their stress-induced secretion is more short-lived [3]. These differences in HPA axis reactivity have been attributed to an enhanced sensitivity of the negative-feedback loop [2], due to a handling-induced increase in the number of type II glucocorticoid receptors (GR) in the hippocampus [2]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.