Abstract

Spindle waves are a prototypical example of synchronized oscillations, a common feature of neuronal activity in thalamic and cortical systems in sleeping and waking animals. Spontaneous spindle waves recorded from slices of the ferret lateral geniculate nucleus were generated by rebound burst firing in relay cells. This rebound burst firing resulted from inhibitory postsynaptic potentials arriving from the perigeniculate nucleus, the cells of which were activated by burst firing in relay neurons. Reduction of gamma-aminobutyric acidA (GABAA) receptor-mediated inhibition markedly enhanced GABAB inhibitory postsynaptic potentials in relay cells and subsequently generated a slowed and rhythmic population activity resembling that which occurs during an absence seizure. Pharmacological block of GABAB receptors abolished this seizure-like activity but not normal spindle waves, suggesting that GABAB antagonists may be useful in the treatment of absence seizures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call