Abstract
The regulation of osteoblast and osteoclast metabolism is mediated by both hormones and local bone peptide factors. Peptides and hormones are under control of membrane peptidases such as Neprilysin (NEP). NEP is a widely distributed cell-surface zinc-metallopeptidase that is involved in the regulation of several important physiological processes by controlling the half-life of bioactive peptides. Although NEP is known to be present in skeletal tissues, neither its cellular localization nor its function have been established. To address this question, we examined NEP distribution in bones of postnatal mouse. In situ hybridization (ISH) and immunohistochemistry showed that NEP messenger RNA (mRNA) and protein are associated with bone-forming cells including presumptive osteoblast precursors, preosteoblasts, osteoblasts, and osteocytes. NEP levels in newborn and adult mice bones also were compared by immunoblotting. Higher amounts of NEP immunoreactivity were observed in newborn as compared with adult bones, suggesting a relationship between NEP expression and bone growth. To further explore this hypothesis, we monitored in vitro NEP proteolytic activity using a series of synthetic osteogenic peptides such as parathyroid hormone-related peptide 1-43 (PTHrP1-34), osteostatin (PTHrP107-139), osteogenic growth peptide (OGP), calcitonin, alpha-calcitonin gene-related peptide (alpha-CGRP), and PTH1-34. Except for PTH1-34, all peptides were found to be NEP substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.