Abstract

Epidermal growth factor receptor (EGFR) is overexpressed in a variety of human malignancies, including pancreatic cancer, breast cancer, colon cancer, and non-small cell lung cancer. Overexpression of EGFR is a predictive marker of therapeutic response and several lines of evidence suggest that EGFR is an excellent target for tumor therapy. However, the effective antitumor capacity of EGFR-specific T cells against EGFR-overexpressing tumor cells has not been fully elucidated. In our previous study, we identified an anti-EGFR single-chain variable fragment (scFv) with specific and high affinity after screening by ribosome display. In this study, the anticancer potential of anti-EGFR scFv was investigated on the basis of cell-targeted therapy. A chimeric antigen receptor (CAR) targeting EGFR was constructed and expressed on the cell membrane of T lymphocytes. These CAR-modified T cells demonstrated antitumor efficacy both in vitro and in vivo. In addition, the safety evaluation showed that CAR-modified lymphocytes have no or very minimal acute systemic toxicity. Taken together, our study provided the experimental basis for clinical application of genetically engineered lymphocytes; moreover, we also evaluate a new and interesting cell therapy protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.