Abstract

Sperm that swim collectively to the fertilization site have been observed across several vertebrate and invertebrate species, with groups ranging in size from sperm pairs to massive aggregates containing hundreds of cells. Although the molecular mechanisms that regulate sperm-sperm adhesion are still unclear, aggregation can enhance sperm motility and thus offer a fertilization advantage. Here, we report a thorough computational investigation on the role of cellular geometry in the performance of sperm aggregates. The sperm head is modelled as a persistent random walker characterized by a non-trivial three-dimensional shape and equipped with an adhesive region where cell-cell binding occurs. By considering both, a simple parametric head shape and a computer reconstruction of a real head shape based on morphometric data, we demonstrate that the geometry of the head and the structure of the adhesive region crucially affects both the stability and motility of the aggregates. Our analysis further suggests that the apical hook commonly found in the sperm of muroid rodents might serve to shield portions of the adhesive region and promote efficient alignment of the velocities of the interacting cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.