Abstract
Vaults are evolutionary highly conserved ribonucleoprotein (RNP) particles with a hollow barrel-like structure. They are 41 x 73 nm in size and are composed of multiple copies of three proteins and small untranslated RNA (vRNA). The main component of vaults represents the 110 kDa major vault protein (MVP), whereas the two minor vault proteins comprise the 193 kDa vault poly(ADP-ribose) polymerase (VPARP) and the 240 kDa telomerase-associated protein-1 (TEP1). Vaults are abundantly present in the cytoplasm of eukaryotic cells and they were found to be associated with cytoskeletal elements as well as occasionally with the nuclear envelope. Vaults and MVP have been associated with several cellular processes which are also involved in cancer development like cell motility and differentiation. Due to the over-expression of MVP (also termed lung resistance-related protein or LRP) in several P-glycoprotein (P-gp)-negative chemoresistant cancer cell lines, vaults have been linked to multidrug resistance (MDR). Accordingly, high levels of MVP were found in tissues chronically exposed to xenobiotics. In addition, the expression of MVP correlated with the degree of malignancy in certain cancer types, suggesting a direct involvement in tumor development and/or progression. Based on the finding that MVP binds several phosphatases and kinases including PTEN, SHP-2 as well as Erk, evidence is accumulating that MVP might be involved in the regulation of important cell signalling pathways including the PI3K/Akt and the MAPK pathways. In this review we summarize the current knowledge concerning the vault particle and discuss its possible cellular functions, focusing on the role of vaults in chemotherapy resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.